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Background:

As material for possible historical (as well as motivational)

interest, we may observe that Volume 1, No. 1 of Management Science

contained an article entitled ""The Stepping Stone Method for Explaining
Linear Programming Calculations in Transportation Type Models. "
Volume 1, No. 2 contained an article entitled '"Optimal Estimation of
Executive Compensation by Linear Programming. "l The purpose of
these two papers was to help this new journal and the new society,
TIMS, which published it get off to a start that would also provide a
basis for further growth not only in themselves but also in a society
(TIMS) which would, in turn, greatly enlarge the prospects for these
and other related developments in the management sciences.

By emphasis at least, the first of these two articles was designed
to appeal to immediate use and understanding. The emphasis in the
sccond article was directed to longer range potentials for additional
applications in the then new discipline of linear programming. Some
of these applications included extensions to areas like "inequality con-
srancd regression, " 'multi-dimensional objective optimizations"
and their 2xtensions to ordinal non-metric scaling, including non-
Archnedean constructs. 2 New theory ar well as new methodological

possibilities were algso naturally kept in mind, and exploited as their

1. Sce [2} and [3] in the bibliography appendix to this paper.

2. See [4;.
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potency for applications appeared to warrant., Thus, the transportation
model in the first of these two articles was extended via a variety of new
ideas which ranged from the development of the "poly - » method"S to the
use of model transformations and approximations. Ideas in the second
article subsequently gave birth to attempts to exploit the use of linear
programming models and methods to attack a variety of nonlinear
problems. 4 They also gave rise to the goal programming ideas which
have now begun to be used in a variety of novel contexts. One such use,
the OCMMsseries of models [12], has also involved a change in the
state of modeling per se by joining the ideas of goal programming and
MarkoV processes into a new approach for dealing with decision (Markov)
processes,

As in these other developments, applications associated with
the OCMM models have provided points which now make it
possible to undertake further methodological and theoretical developments,
as well as applications, that will provide still better bases for future
extensions. This, in fact, is the.point of the present paper, which will
be followed by others, in which we shall undertake to join some of the

preceding work (e. g., in model approximation and goal programming)

3. Zee[4).
4, See Charnes-and-Lesee [11], [13], [14].

5. OCMM (Office of Civilian Manpower Management, U. S. Navy)
This series of models is described in [12].
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not only with each other but also with presently disparate developments
(e.g., in linear programming under uncertainty) while we simultaneously
aitempt to provide solution procedures (including good starts) that can
supply operational significance for the new problem areas that might

then be addressed.

Introduction

Explicit solutions to linear programming or linear fractional
programming problems presently exist only for special cases, the
most general of which are the full row rank interval programming
and the full row rank linear fractional programming.

In some cases these models are of dircct interest. This
naturally includes those cases where problems can be modelled to
fit the theoretical and computational requirements. It also includes
cases for which model (structure approximation and parameterization
imethods can yield either exact or approximate solutions to more
complicated problems.8 Finally it includes cases in which advanced
starts can be thus obtained including ones which greatly accelerate
the attainment of solutions--as when, e.g., primal simplex technique

applied to such starts have yielded great improvements in efficiency

6. See[1].
7. See [5).

8. See [6].



relative to alternative solution procedures that might otherwise have
been required. 9

There are at present no comparable classes of explicit
solutions to ''goal programming'' models. The increased usage now
being accorded to this type of model, however, would seem to justify
such developments in order to anticipate benefits for thfs class which
are analogous to those described in the preceding paragraph.

The present paper is directed toward developing such solution
procedures for the general case of piecewise linear, but separable,
"goal functionals,'" We define a separable functional as a sum of
one -variable goal functionals. A one-variable goal functional, fj(xj)’
is & function that is monotone decreasing for x'i £ gj --g'i = the stip-

)

that strict monotonicity is not required. In fact for the important

ulated jth goal--and monotone increasing for x. >gj. Note, however,

"goal interval' type of model, the functional has a constant minimum
over a whole interval,
The following examples are included in this class:

(i) Absolute value functions, including those with asymmetric
weights and multi-goal components.

(ii) General convex piecewise linear functionals

(iii) Goal interval functionals

9, See" ii.dl‘\.andjls ]iGhnaoo—.—Giovecr-Kungmn, et. al.



(iv) Hypermedian functionals and related functionals in extensions
of ordinary goal programming, 10

This list is not exhaustive, but it is nevertheless indicative
of the many significant kinds of problems that are included for the
development that we shall now provide as follows: First we shall state
and prove a very general lemma which can be used to reduce and
simplify such problems. This lemma will be presented in the next
section--i.e., section 2--along with its application to a simple (but
significant) class of cases. The lemma, we may note, is not restricted
to the latter class of cases and is, indeed, established in far greater
generality than required for any part of the present paper. In addition,
we shall proceed to our results for obtaining explicit solutions via
general separable convex piecewise linear functionals, which will be
covered in section 3. In this section--i.e., section 3-- we shall
obtain a linear programming equivalent which will be extended in
section 4 where procedures for obtaining explicit solutiors will be
delineated, Section 5 will then conclude this paper with a numerical
example which will serve to illustrate some of the results achieved
in the present paper and also indicate some of the possible extensions

that will be covered in later papers in this series.

10. See [ 7] €hernes,—Cooper,-Thompson for-exact deftmttions

and elaborations.



2. A General Reduction Lemma.:

The following lemma is established in far greater generality
than we shall require for this paper. Indeed, no properties other
than monotone decrease up to the goal and monotone increase to its
right are stipulated. Thus, we let f = 3f (xj) where fj(xj) is monotone

j 3
decreasing for Xj shJ and monotone increasing for x.l 2 hj' Then we

consider the following problem:
(1.1) Min. f(x) =2f, (x))
j )

subject to Ix; sb
i 1)

(a.2) aJsijbj

With this in mind we now develop
Lemma 1: If x satisfies (1.2) and for some j,, x, >h; , then

X satisfies (1,2) and I(Y)s f(x), where o o
Xxs (.. .20

ax(aJ. )JJO

Proof: If x, i - < . - h. =g
roo x‘]o is replaced by )0 4, 0 A< min, (xJo hJo' Xio aJo)' then

f.
Jo(xJ flo(xJ )
Sx. -
aJ J A< b
and Exj + xjo -4 S bo. where Jo signifies that the summation
Jo

omits the variable with this index.



Thus, (1.2) is still satisfied. Also f. (xj ) is monotone increasing

o Jo
for h-OS x; . We therefore obtain a decrease (or at lease no

) Jo
increase) by setting A at its upper limit & and define S('jo = Xjo~ Iy
max (h, , a;, })$ x. ., Butx., > h. . Hence
Jo’ “lo lo Jo o

fjo(on)S fjo(xjo)
and 2
28 (x)+ 1. (X ) <f(x).
l.e., 1 Jo lo
(%) < f(x),

and the lemma is thus established,
The lemma covers in particular nonlinear goal functionals of types

such as those drawn in the following figures.

[ . fix.) fix)
; j'h:] 1‘“3
g A F
\
,; | ' :
i ! e " ] %
4 - " . 4
h, Z
i h; Ny
Non-Convex Functional Convex Functional Piecewise Linear
Figure la Figure 1b Functional

Figure ic

" o, further, also that the simple constraint Exj ‘bo in the lemma may

be replaced by any system of constraints such that decreasing any single

variable preserves feasibility of the constraints. E, g., the system
bx; + 2x2 + x4% 20

xz + 3X3 + 5X4 ‘50



=

would be a valid type of replacement for the single constraint of the lemma.
See the illustration in Section 5.

We proceed first to consider, however, the particular case
(2.1) mv'_nZ) uj lxj - gj |

subject to )j‘)xj < by
{(2.2) ajsxjsbj

where, without loss of generality, the constants uJ. are indexcd so that

o e e Zuj Gl '—‘un > 0. Because of Lemma l, we can impose the
additional condition

(3.0) x Ssmax (g., a:)=b
; ma g a; ;

Via (2.2), however, g <x; so that if gj <a

.

we need only set x].=a]- and

i

reduce the preceding problem to one in the remaining variables

(3.1) min® u. | x. - g.
mmj u]'] g]

subject to
.?_ij <b .

3.2 <x =b”
( ) a‘]s>cj<bJ

where b : is defined as in (3.0) and aj » gJ sb; with, again, M) ® pg 2...2

2...2 1 > 0, by re numbering, if required, and b; is bo reduced

n

by the x. = a; values. Abusing notation, we replace n” by u too.

Because of Lemma 1 and the definition of b_', however, we now
J

have X - gj <0 all j and this implies

Ix; - gl = g; - x,



Thus we may now replace the preceding problem by

(4.1) max L:u, x]

i
subject to & x_ sb(:

i R
(4.2) X s - 2.

This is an ordinary linear programming problem with a dual that mav be

written

(5.1) min vgbg +§(v;' bj’ =¥ aJ-)

subject to
+ -
5 < - = M
(5.2) 7 vJ_ vy ;
* -
V.. V., v, =8
0% j

If 2,a_>bg then the constraints of (4. 2) are evidently inconsisten

J

ince the a, are lower bounds which the corresponding xJ must satisfy.

if we assume that Ea;b(; then the optimum solution of (4. 2) can be
i
immediately written-

k-1 D
=l 3 55 Kk+1 J
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T'o see that these x* choices are optimal we observe that they sz:ltisfy
n

3 p
5 pb4u(b b-ua+§,r18
{he constraints in (4.2) and produce Z;uJ x] | gl F K+l | ki1 1)

2‘}“ u )b '7.;]1-&] Uk)d

11
' the functional (4.1). Via regrouping = this becomes ukb +
Applying the "regrouping principle' (see [+]), we posit these coefficients

48 optimal dual variables and need only verify that they satisfy the dual

constraints--viz,,

* 2
vo “k

*t
VJ.= °uk20,,]l . ,k'l
v =0, )91 , k-l

J

*t+ = - o
vE v 0

- = 3 skt
VJ My “3 0, )=k#l, ..., n
v =0, - k4, ..., n.

J

, x k- .
I'hese values of vy, vy vy are non-negative as required. They also

itisfy the other dual constraints in (5. 2) since, as may be seen, these

V¥ choices give

U Tl Sl j=..... k-1
Hk " Mk
i *H) - B - i=k+l,....n

1o substitution in (5. 2).

' il. 1. e., we are here using a variant of the ""regrouping
principle first set forth in [ 9] as a means of obtaining explicit solutions
'ia the dual problem, See also [4].
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This completes the proof that our explicit solution x* is optimal.

{ ulso shows in full detail how we can use the lemma to obtain explicit
solntions in this class of cases, The next section will extend this
result to the case of general separable convex piecewise linear

functionals,

5. The General Separable Convex Piecewise Linear Functional

The func;tional we are considering is separable--i.e., it is
« sum of functions each involving only one variable. tence, we will
' able 10 apply Lemma 1 and perform a reduction on one variable
~1 2 time to obtain a linear programming format. The explicit
solution will then be developed and exhibited in the section after this
one,

The general (continuous) one variable case has a graph con-
sisnting of straight line segments with slopes that increase from left
to right. See Figure lc. As is well known classically, such a function

i be written as
(6.1) f3(t) =zj§uj Jt-g; |+ pt+q

where the gJ, HJ , pand q are given constants with My = 0, allj.

In this form we state the following:
l.emma 2: A necessary and sufficient condition for fa(t) with

“j 20, VJ, to be a goal functional is that %:“j 2 |pl.
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Consider then

) =5 w ft-g | +pt+a
J=l J J
and
. ntl
°(t) =Lk

+d, k. sk.,,, VJ
371 b

X )
The graph of £5) is shown in Figure 2. Now consider
Hh<g
O<t. =g - &
58 7 &1

O0< tn+l

Forts «: fa(”~%“3 +p)ton
(O S
Hence
n
P+l Tk,
1 " e n
For t 4= ()~ (- Puj + ph.

-]
£5(t) ~Ky tl

Hence
n
P '?tﬁ - kl
Therefore
n
= 2 + = -
p=1/ (kl Kn+p)s ‘{)uj 12 (kyy kl)

Yet, forg. st<g, weh =
gJ_1 gJ ave t gj-1+tj' 80

i-1 n
fA) =2 M (g. , +t. - +DH =15 -
il gj-1 tJ g 2. r (8, g'i t)) + p(gj_l +tJ) +q

r=)
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g, J;! ; o
: - +Kt, +
£7(t) ri-i kr(gr g kjtJ 1’
where g = 0.
Thus
j-1 n il r
=, -on -5 +
f3(t) %ur JzJ o ¥ p)tj + (Jf:ur T i+ p) gj_l
-1 7
+%" Mg *tNFrgr *ta
r-r j
il
5(t) = - ) +d
£5(t) kjtJ 4>1>:)(x.(gr AL
For t=01 gy
n
) = (p-Su) )+ kyea
1 T
(5(t) = kjt) +d,

n s n
=p- ., d, = q+uM
k =P ?HJ L ?l

From before:

n L -
ort= gy *t;: j P s ? s
-2 n
& B + thy =p + .
For t g .2 ty-1 kj-l o lEl-ls j@l“s
Hence kJ LTS 2“1_1

T ]
Thus, given kl’ R 1 Bpoeeor By dj in the {(t) form, we

can determine the f2(t) form via
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1]

p =12k + kyy)

"

g dl-llz (kn+l "kl)

Conversely, given the fa(t) form withk), ..., B, P, d and

- . N s
g, wecan determine d), kl' e kn+l' ior the £7(t)

Oy vn
n
dl =q 4 ?Hj
h b
ky =P T
-l n ‘
kJ‘p*““S-T" _k]- '2"11'
1 ]
%
L
killlll'l.
't".‘
\
\- |
K |
3 I--l--i-n
| | |
] I _rk] |
| T : I
0 | 1 |
[ | | :
] | ] : |
| | [ - C
I i !
e | i | |
4] g9 EJ-I EJ én
Figure 2’
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Because we are dealing with a piecewise linear and convex
problem, we have been able to reduce the portion corresponding to
one variable t to a separable linear form on the tJ. with individual
interval constraints. Going back to our total functional (which is the
sum of functions of one variable each) and splitting each variable whose
functional is nonlinear, into a sum, as above, we have thereby reduced
the solution of the general convex problem to that of a lincar progran.

The solution of the latter will be exhibited in the {ollowing section,

4.1 Explicit Solution

Because of the equivalence we have developed in the last section

l'ctween functions in f2¢) and 5(t) format, we can evidently always

write the general convex piecewise linear segarab"lﬁ functional (with
a finite number of picces) as a linear functional subject to internal con-
straints on the "incremental' variables. We shall therefore take our

candidate for explicit solution in the reduced (equivalent) form:

1
(8.1 min k(l)T x( ) + k(Z)T x(z)

" 2
JUT W @r (2) <k

a(l) & x(l) E b

3(2) < Ax(z)sb(m
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in which we now use vector-matrix notation with

1
k(l)'I’ (1) ( )

= (kl A k“l
(2)T (2) (2)
k -(kl....,knz)
(T _, (D (1)
X -(xl,....xnl)
(2)

x(Z)T = (x 'URERE x(2)5
na

A = (aij) is of full row rank

. ule that if A is of full row rank, so is a matrix Q) R) Thus the above,
which we have written to separate out that part of the constraints and
functional which corresponds to the non-linear goals, can be rendered
in the form
min ka
(8.2) de < b,

aslAx sb
v

«herc Ais of full row rank. We can make the transformution y = Ax,

or x = .l-\#y + (I-A”D z, where A# is a generalized inverse of A (e. g.,a

right inverse) and z is an arbitrary vector. B
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The problem may now be rewritten

min kT;A#y + kT (1-a*a)z  with

(9.1) aTAly +d" a-A*A 2 5b,
asy <b
Now let
(;Tij‘yj, . dTZ\f {0
I
S, rl J

Ca-afhy 2, irdTa-ATR 7 o
k z , if (I-A A)k 3
k
Then the problem may be written

(9.2) min kTn+ &Ts

L) T
e.t. eTn+€- sSbo

asn sb
where
. 1, itdTAY £ 0
eJ = ;
0, if dTAj = 0
. (1 iaTa-afA o
(9. 3) & =
k Yo, it a-dh -0
kTA / dTA " , if dTA;'#
K = T-# '

T A% -
kAj ,ifdAj

0

0
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k(1 - 1aTa A"A) ir aT 1-A" At o0

k (I-AA) if d (X-A#A)r =0

d A.ia,,lfu .Z\]

"
o

- T-#
a = i 5
y aj, if d AJ
aTab. 1raTa! <o
i0j j
: ¥
(;TA;'bJ ifdr A, >0

-#
b, if dTAj =0

P-4
n
A,

QTA#aJ. if d A;' <0

Combining the components of n and s into a single vector

g'[‘

F (él, ..., &) in the order of decrease of their functional coefficients
fcj ; I;r, and adjoining -®, + = lower and upper bounds for the %r which are

S, s, the problem may be written in the form

(10.1) min k'g

with e1¢ s b,

asegsh

L3N

where Tc'l = T('z €... 8 Tc'n, the 'EJ correspond to ﬁj'se‘r -«  the Sj cor-

LY

respond tn E}.'s or += the 'Ej are the appropriate% or é( For consistency we

n" ; )
must have? 'é'jaj sb Setting gj = ‘iJ +£5, the problem may be rewritten,

A e i - ree ~ i g

LA

- e | Dot

C———— TRy Ty -



This is a linear programming problem. It therefore has the following

dual
‘ + 1
min. wb_ ;];wj BJ
(10.3) with LA + wjz-kj
w,w 20,
o ]
We now introduce
= g _~_ 2 ~, =
a3 = fi K 20andF 0}
‘. -v. z ~ =
Jl € {] k_] 0 and ej 1}

I

e

eb <b
s

r = max j such that -kj 20, e = 1, =

and shall show that an optimal solution to the primal problem is

(12) 55 =bj, ijl
€ =b,-Z &5 =b; -5 2.5
: = - e. =] - e. q
I ijlJJ 1 ijluJoJ I

% .
gJ_-O, j€ [r]UJOUJl




-21-

where {r} is the singleton set with element r. Then

13 v K. € (k)B' (-K)bS +(-k )(b B:)
(13) JJ 3: ? % JZ:OUJIJ

= (-T:'r)bo + %(J)G-T(J) - ej(-krgb'i + terms under Jl‘

We now employ the regrouping principle and posit the following values
* . %k S ~ x
for the dual variables: W_ = -Kp, Wy = -kj = ej(‘kr)- ) €Jyudy w.i = 0 otherwise

E 3
Noting that these are all non-negative, we check ttat these w satisfy

the other dual constraints--viz,,

st
Exd

* =
14.1 L +w, =
{ ) woeJ wJ (-k,.} J

+H-ky - &k = ~K

JforJCJouJ

1

Thus the Jou Jl dual constraints are satisfied. Next,

% = = ,
(14.2) woe‘]+wJ = -(kr)ej for _](.IOUJl

We need to show here that -(K.) € ®- ;i' If -k; 20 then ‘é'j =land j>r so
that -k_ » -k.. -k -K)e -k )e
at -k_ 2 kj It kj < 0, then since ( ﬁr)e'1 > 0 we have ( T('r)ej > Ti'j.

Thus all dual conditions are satisfied,

Passing back from g to § our optimal solution for (10.1), is therefore

g =B, ie vy

Jqu J’7JquJ

ko~
g'zaj'ldJoUJl
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4.2 Further Computational Reduction:

For simplicity of exposition the general separable convex
piecewise linear functional was transformed directly into linear interval
programming format employing additional variables, one for each of
the linear segments. Our fundamental lemma, however, makes it
possible to reduce (sometimes very substantially) the number of seg-
ments which need to be considered and also reduces the number
of variables and constraints which need to be introduced. Because
of this lemma, we can restrict an original variable in the goal functional
to be bounded above by the first gJ at which the goal functional minimum
over a £t < b is attained.

The use of this technique, together with other reductions that
are possible for special goal programming functionals, will be presented

in additional reports in this series together with applications involving

various utilizations of advance starts., As a start toward that end we have
supplicd a numerical illustration which illustrates some of the preceding

developments.

5. Numerical Illustration:

We now conclude thc present paper with a numerical example

which illustrates the remarks we have just made. For this purpose

we adapt an example from the paper which initiated this series of studies
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in manpower planning,

Applying the procedure of :nodel approximation sketched in
the next to last paragraph on page 11-8 of [;,] to a curtailment of that

example we have as our problem

min. |N; (1) - 301+ [N, @) = 200] + [Ny(2) - 70| +|N,(2) - 300]

subject to
0 < Nz(l) £ ®
M I5N.(1) +13N, (D) < 3,000
2. ). 1 2
44 = Nl(2) £ o
43 < Ny(2) s =

15N1(2) 13Ny (2) £ 4,000

Here we have confined ourselves to a model involving only two types of

manpower in a 2-period plan. Thus, the variable Ni(t) refers to the
amount of the ith type of manpower, i =1, 2, scheduled for recruitmen.

in period t = 1, 2. The admissible values for these variables are in

interval form except for the two budgetary constraints which are

applicable at the indicated salary levels of 15 and 13(thousand dollars/annumi
in each period. Essentially then this is all in the form of the expressions
given in our General Lemma (see section 2, above) with the goals of

30, 200, 70 and 300 stipulated in the absolute value functional for (16),

Ey our Lemma 1, the above example may be transformed into
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maximize NL(l) +N2(l) +N1(2) + N2(2)

subject to
0< N1 < 30
0s Nz(l) < 200
(17) 15N (1) + 13N2(l) < 3,000
44 < Nl(2) <70
143 < No(2) < 300

15N, (2) +13N2(2)$ 4,000

We now have only an ordinary linear programming problem that
involve.s no more variables than the nonlinear problem (16). Further-
more, (17) may be split into the following two separate subproblems.
maximize N;(1) + Ny(1) subject to
0 <N;(D) £ 30
(18.1) 0s Ny(1) < 200
lle(l) +13N,(1)  =3,000
and
maximize N;(2) + N,(2) subject to
44 < Nl(?.) £70
143 < No(2) =300
15N1(2) +13N,(2) = 4,000

Without further ado we can then write our optimal solution for
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(17), and hence (16), via (18.1) and (18.2) This gives

* b <4
N] (1) = 400/15, No(1) = 200

1481
13

Nl*(z) =44 Nx(2)- 143+ = 257,

Evidently our lemma has produced a simplification so that achieving a

solution to the nonlinear problem (16) invoived practically nothing more

than merely a solution by inspection of two much smaller linear problems.

This suggests further possible ways in which the ideas contained in our
lemma may be extended to other classes of problems. Such develop-
ments are best delayed, however, until they can be treated in their

own right via other papers in this series.
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